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Abstract. The most important fact on differential neural networks (DNN) dynamics is
related to the weights time evolution. This is a consequence for the complex non-
linear structure describing the weights matrix differential equations associated with
the adaptive capability for this kind of neural networks. However, there is no any
analytical demonstration about the weights stability when the DNN approach is
considered. In fact, this is the main inconvenient to design real applications for
differential neural network observers (DNNO), especially to propose adaptive control
functions for uncertain non-linear systems. This paper deals with the stability proof
for the weights dynamics using an adaptive procedure to adjust the weights ODE.
Three different examples (two of them were realized by numerical simulations and the
last one was carried out using real bio-filtering process data) demonstrated the
suggested approach performance.

1. Introduction

Artificial Intelligence (Al) is a vast and complicated subject area. Like many others, it
is dogged by terminology and unexplained mathematics. At a base level, Al concerns
some numbers that are changed by algorithms over time to achieve a certain goal.
Many paper and books have been written on intelligent control using neural networks
(NN) [1], [2]. NN's and their universal approximation property and learning capability
[3] have proven to be a powerful tool to control complex dynamically non-linear
systems with parameter uncertainties. Exploiting the fact of being universal
approximates, it may straightforwardly substitute unknown system uncertainties by
Neural Networks schemes, which is defined by a specific mathematical model
(continuous, discrete, etc.) but contains a number of unknown parameters ("weights")
to be adjusted. Depending on the suggested neural network model, its free parameters
could appear as a linear or non-linear element in the NN description, and they may be
modified using differential or difference equations [4], [5]. This kind of adjustment
algorithm, transforms the original problem into a nonlinear robust adaptive feedback
one. The differential neural network (DNN) approach, exploiting the properties of the
applied NN, permits to avoid many problems related to global extreme search (as is
usual when backpropagtion NN are applied), converting the learning process to an
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adequate feedback design, [5]. If the mathematical model of a considered process is

incomplete or partially known. the DNN-approach provides an effective instrume
nt to

attack a wide spectrum of problems such as identification, state 
estimation, trajectories

tracking, etc [3].

Lyapunov's stability theory has been used with
in the neural networks for control

literature since fifty years [5]. [6]. This is the main tool to guarantee close-loo
p system

performance. Even though there is a general trend to enlarge the nonlinear systems for

which the aforementioned works ca
n be applied. On this field results on s

tability.

convergence to arbitrarily small sets and robustness to modelling imper
fections and

external perturbations of the closed-loop sys
tem, have been established, in order to

provide a larger class of non-linear
 systems that can be treat by this tech

nique. The

problem of learning in automatic control systems has been stu
died in the past,

especially during 60s. At that time, l
earning was analyzed as the estima

tion or

approximation of the unknown quantities in a function, in similar way to other terms as

adaptation and self-organizing. Later on, learning theory has become 
a research

discipline in the context of machine le
arning, and more recently, in computational 

or

statistical learning using stochastic principles [7].
 In neural modelling, learning is a

path in the space of control parameters driving the system toward phase transition and

bifurcations [8]. Though statistic learming theory could provide efficient learnin
g

algorithms for a wide variety of problems: in the robust analysis and synthesis of

control systems, e.g., [9]. However, the same kind of learning process is complex to

understand and difficult to be applied in pract
ical state estimation and control systems,

which are mostly dynamic and deterministic by nature.

The main contribution of this paper deals with the justification of the

boundedness property for the weights trajectories involved in the suggested DNN state

estimator description. By Lyapunov technique, the s
table behaviour for the matrix

differential learning law (which is also derived along this study) is analyzed. Besi
des,

the adjustable parameters involved in the weights dynamics are suggested to be

designed like sigmoid function or the, so-called, inverse one
 with a predefined rate

convergence. Three simple examples demonstrated the 
workability of the approach

provided in this paper.

2. Differential Neural Observer

The class of systems to be treated during this work is described by the vector nonlinear

differential equation

x, = f(x,,u,,1)+ y, = Cx, +52.,
(1)

where x, ∈9R" is the system state, y, R" is the system output (p≤n).

u, ∈R" is the bounded control action (m≤n) belonging to the following

admissible set Uadm =\n : n =n'vus ° > f V" = V" < 0. The output=:

matrix C∈RP*" is assumed to be a-priory known. The nominal closed-loop
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pollutants produced by the industrial and human activity and the advantages offered by
this technology. A lot of studies were conducted to enhance the performance of
biofiltration systems. Consequently, there is a necessity to develop methodologies
enabling to predict and determine the reactor performance, not only to design more
efficient reactors but also for predicting and control the behaviour of the systems under
different conditions of pollutants feeding, air flows, humidity and biomass production.
The model inputs were the carbon dioxide production (x3,) and the pressure drop
(x) (on line measurements), the outputvariable was the elimination capacities (CE).
which describe the amount of pollutant eliminated by microbial activity. The DNN
observer was used here to reconstruct both on line measurements, so this approach can
be used like input identifier and to reconstruct the relationship between the plant states
and the input variables (Fig. 3).

4. Conclusions

The novel approach suggested in this work solves one of the most important problems
related with the, so-called, differential neural networks: the bounded property of the
dynamic evolution for the weights parameters. The asymptotic convergence has been
demonstrated applying a Lyapunov analysis, generating the corresponding conditions
for the possible learning rate function. Using these conditions, two different suggestion
were made in order to show why is this method feasible. Three numerical examples
show the simulation efficiency for this new kind to treat the learning procedure in
DNN.
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