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Abstract. The most important fact on differential neural networks (DNN) dynamics is
related to the weights time evolution. This is a consequence for the complex non-
lincar structure describing the weights matrix differential cquations associated with
the adaptive capability for this kind of neural networks. However, there is no any
analytical demonstration about the weights stability when the DNN approach is
considered. In fact, this is the main inconvenient to design real applications for
differential neural network observers (DNNO), especially to propose adaptive control
functions for uncertain non-linear systems. This paper deals with the stability proof
for the weights dynamics using an adaptive procedure to adjust the weights ODE.
Three different examples (two of them were realized by numerical simulations and the
last one was carried out using real bio-filtering process data) demonstrated the
suggested approach performance.

1. Introduction

Artificial Intelligence (Al) is a vast and complicated subject area. Like many others. it
is dogged by terminology and unexplained mathematics. At a base level, Al concemns
some numbers that are changed by algorithms over time to achieve a certain goal.
Many paper and books have been written on intelligent control using neural networks
(NN) [1]. [2]. NN's and their universal approximation property and learning capability
(3] have proven to be a powerful tool to control complex dynamically non-linear
systems with parameter uncertainties. Exploiting the fact of being universal
approximates, it may straightforwardly substitute unknown system uncertainties by
Neural Networks schemes, which is defined by a specific mathematical model
(continuous, discrete, etc.) but contains a number of unknown parameters ("weights")
to be adjusted. Depending on the suggested neural network model, its free parameters
could appear as a lincar or non-linear element in the NN description, and they may be
modified using differential or difference equations [4], [5). This kind of adjustment
algorithm, transforms the original problem into a nonlincar robust adaptive feedback
one. The differential neural network (DNN) approach, exploiting the properties of the
applied NN. permits to avoid many problems related to global extreme search (as is
usual when backpropagtion NN are applied). converting the learning process to an
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adequate feedback design. [5]. If the mathematical mos!cl of a considered process is
incomplete or partially known. the DNN-approach proy:des an efT(':cuv.c instrument 1o
attack a wide spectrum of problems such as identification, state estimation. trajectories
tracking. etc [3]. x

Lyapunov's stability theory has been used within the neural networks for control
literature since fifty years [5]. [6]- This is the main tool to guarantce c‘losc-loop system
performance. Even though there is a general trend to enlarge the nonlinear systems for
which the aforementioned works can be applied. On this field results on stability,
convergence to arbitrarily small sets and robustness to modelling impcrfcclions and
external perturbations of the closed-loop system. have been cslabll_shcd. in order to
provide a larger class of non-lincar systems that can be treat by lh|§ lcc_hnique. The
problem of learning in automatic control systems has been studied in the past,
especially during 60s. At that time, leamning was a.nal'yu.:d as the estimation or
approximation of the unknown quantities in a function, in similar way to other terms as
adaptation and self-organizing. Later on. learning theory has !)ccomc a research
discipline in the context of machine learning. and more recently. in computational or
statistical leamning using stochastic principles [7]. In neural modelling. learning is a
path in the space of control parameters driving the system toward phase transition and
bifurcations [8]. Though statistic learning theory could provide efficient leaming
algorithms for a wide variety of problems: in the robust analysis and synthesis of
control systems, e.g.. [9]. However, the same kind of learning process is complex to
understand and difficult to be applied in practical state estimation and control systems,
which are mostly dynamic and deterministic by nature.

The main contribution of this paper deals with the justification of the
boundedness property for the weights trajectories involved in the suggested DNN state
estimator description. By Lyapunov technique. the stable behaviour for the matrix
differential learning law (which is also derived along this study) is analyzed. Besides.
the adjustable parameters involved in the weights dynamics are suggested to be
designed like sigmoid function or the, so-called. inverse one with a predefined rate
convergence. Three simple examples demonstrated the workability of the approach

provided in this paper.

2. Differential Neural Observer

The class of systems to be treated during this work is described by the vector nonlinear
differential equation

5= Sl )+ és 9, =C0x+ 4, .
where x, € R” s the system state, y, € R” s the system output (p< n).
u, € R" is the bounded control action (mSn) belonging to the following
admissible set. U = {u D, suAuS V< w} A, = A, > 0. The output

matrix C € R””" is assumed to be a-priory known. The nominal closed-loop
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dynamics is quadratically stable for a fixed control u,' ey , that is, there exists a

Lyapunov function l_/; such that :

A
a—x'f(xl’ul ,I)S -11"xl"2 <0
o

Ox

2)
Sl <w, 4,450

The vectors &, and &,, represent the state and output deterministic bounded
2
(unmcasurablce) disturbances, i.e., “‘L-'"A < Y/ 5 A‘: >0, /=1,2, and do not violate
4

the existence of the solution to ODE (1). The nominal output system (without external
perturbations sfz_, =0 ) is uniformly observable [10], that is, the following

(obscrvability) matrix is no singular forany >0 :

o=v oLl e ] o

Here L/ () is the Lic derivative operator [10). To ensure the uniqueness and the

existence of the non-lincar dynamics, it is supposed the class of non-lincar functions in
(1) satisfies the Lipschitz condition (uniform on 1) on two first arguments, that is,

e wn)= £l < Ll = s+ Ly -]

Lr©.0,0)} <Cj; x,yeR"; uvenr™ 0<1L,L, <o .
The last assumption automatically implies the following cone-property
IL[(X,,:I,,I)IZ <C/+ C,[lx, ||2 5)

Which is valid forany x,u and 1. Notice that (1) always could be represented as
’%I = fo(xnun’ I @)+j; +§|.l
./; = f(X,,ll,,l)-fo(X,ll,l I @)

where  f; (x,u,1] ©) s treated as a possible "nominal dynamics” which can be

(6)

sclected according to a designer desires and  f, is a vector called the "no modelled

dynamics”. Here the parameters ©  are subjected to adjustment in order to obtain the
complete matching between the nominal and the non-linear dynamics. In view of (6)
and the comresponding boundedness property, the following upper bound for the no
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modelled dynamics _7, takes place:
~ |12 ~ ~ 2 1
”/;"A Sfo"'fl"xl".\‘/-’ A/’Af >0 ¢
s

According to DNN approach [5]. we will define the nominal dynamics as

£ (e, u,1]1©)= A°x + wlo(x)+ wlp(x)u @
0= [W,“,Wz"], A® eR™" W' W, ,eR™",0¢€ R pe R
The activation vector-functions O, () and (p() are usually constructed with sigmoid

function components

o‘l(x) =a/ll+b, ex;{—chxl)
=l

(/)‘,(x) =ay|1+by ex;{— Zc‘,x,)
J=1

& 9

j=Ln, k=Ln, I=1,m
It is easy to prove that each component in the activation functions satisfies the
following sector conditions

lo(x)-o(N, <l x-x

2
R L

[ I@&)-oGNuly, <1pvlx-*

2.1. DNN structure containing relay correction term

Lets introduce the adaptive state estimator based on DNN [11] as follows:

g = 4% +W,,0(5, )+ W, 0(E)u, +

dt an

: Sl e e
Klbl_Cxl]+th]7 ,YI=C"1
] ]

So. when , = C%, . ODE (11) should be attended as a differential inclusion [12].
Here the weights matrices ( W, ,,i =1,2) supply the adaptive behaviour to this class

of observers. The non-lincar weight updating (learning) law is described by the
following differential equations
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Wi=-hE 42K W, i=l2, j=10

E =ANQ Y, ¥ =0() ¥, =0 (12)
Q, =@, + C"A,C)NPW ¥, +Ce,

Here, the matrix P is the positive definite solution for the Riccati equation

PA + (7Y P+ PRP+0 =0
A =4 -KC
O =AY +A}+ A, +v,A,+Q,

R =AW +wenfwe] + A+ Ay + KA KT+ K,AKT

(13)

The problem analyzed here could be stated as follows: Under the conditions A 1-44 Jor
any admissible control sirategy u, belonging to U et selecting matrices A(o),

K,, K, and designing the update law (12) (including the selection of Wl(u),i =12)
in such a way that the upper bound for the averaged estimation error B defined as

- 1 rys :
B = Ilr?iup:; _[[!r —.\"[Iynds, £.0,>0 (14)

30

would be, as less as possible.

Theorem 1. If there exist positive definite matrices A 7 A,’.’ A ~ NG,
A,. A, O, and positive constants 0.k, v, such that the matrix Riccati equation
(13) has positive definite solution, then the DNN observer (11) with any marrix K,

guarantying  that  the close-loop matrix A" is. stable, that is,
Ao = (A‘"" + K,C) is Hurwitz and K, = AP'C", A >0 supplied by the
learning law (12), provides the following upper bound for the state estimation process:

— 1 2

e <
mle‘)||A,|[l,¢1:_p,_,/a(, b
Po = Jo+vo+ Y, +3Y, +84nY,, a, =4,.(P"0,n""?)>0

The proof of this theorem could be done using the ideas given in [5].

2.2. Stable trajectories for the weights dynamics

Once the upper bound for the estimation process has been derived, it is possible
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(independently) to consider the stability analysis on the Icarn.ing laws obtained during
the observer development. The study was conducted suggesling a new Lyapunov-like
function ¥} for the weight W,, (and the corresponding ¥, to W, ) and applying
the conventional procedure to determine the bounded behaviour for the weights
dynamics. This result could be abstracted in the following:

Theorem 2. The weights time trajectories are stable (in Lyapunov sense).
Proof. Let considering the dynamics for the weight matrix W,., and the following

(suggested) Lyapunov function V.

o b z z20
Vl = .Zl’rbVI.TIWLI}-’-f[kI.I _kl.min]:’ [zl ]» = {0 7 < 0 (]6)
Which immediately implies (by direct differentiation)
Vl = lr&f',_’,' (—kl.IEI +2-lkljlél.lﬁ/l.l)}+ 2-ICk'|.I[kl.l —kl.min ]+
17)

< kl.:l’r{"?l.llsl ﬁ +27k, ;(":‘T”{WJ;WL:}'*' C[kl.l —kl.minL

If VI is desired to be non positive, the free parameter /é,., could be adjusted to obtain

the asymptotic behaviour for the DNN weights dynamics in the following manner

2|, 5=
kS ——== ~2k"'|’r{W"'H'}i (18)
l./Wl.l }+ Ckl.l [kl.l i kl.min ],,

The same approach could be apply to Wz. , structure, resulting the corresponding upper
value for
2 vl =
i Zkz.ll”'{Wz./:zﬂ 19)
2= =T (
’r{u,:'.lWZ.l }+ CkZ.l [kZ.I N k:,min ],

These two condilio.ns avoid the finite time escape for the weights dynamics. This tool
could bc. us'cd specially when there is any possible feedback control using the Weights
Dynamics like adaptive parameter.

2.3. Learning Laws Examples

In this subscction, two simple examples for adaptive learning laws are introduced using
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the next definition

s(W ',,e,) =2k3,

Ji

o . = 1
TR | 2 7 A TS SN [ Lo
a) Sigmoid learning law. The first example uses the sigmoid representation:

- 7T !
k/.l = ko./(l ey a(WI.I’eI )exp(b,l)) + kmim/’ kmm./ >0 @n

The corresponding time history /él., could be easily derived

k‘l.l = —k]_,a(W[, €, )b1 exp(bll)(] + a(W/,: »€, )exp(b/’))—l (22)

which itself implies
a(WL e, )cxp(blt)(kj.,bl - .s(W], e, )) > s(W,'.', e, ) (23)
Last inequality is fulfilled if and only if the weight dependent parameter a(Wi,,e,) is

selected in such a way
(1("7[7;, ,e,)> s(WI'_A,,e, )exp(— b,l)‘P}", ¥ =k, b, - s(WZ',,e,) (24)

b) Inverse learning law with predefined rate convergence. The second adaptive learning
law is described by the inverse learning law with predefined rate convergence:

~ —~1 ~
by = ko4 a0 )0 ) ke, kw0, a0 )50 @)
Itis easy to proof the time derivative for this function is described like

/&,', = koka(ﬁ’,";,e, )IH [] + a(W,:’;,e, )I‘ r, k>1, keXN (26)

The free parameter a(W,:’;,e,) should fulfil the following restriction

27

(77 A 2 177, )k
) k, -25(W,',_.e, )I =+ \/ko -4ko.s(WL,,c,)I s
il w7, )4
25(W,.,,L,)I
It is important to notice that the learning laws must be adjusted on-line, i.c. cach
change on the weights values implies the corresponding change in the parameter a(-) s
so the adaptive process is carried out in two steps: the first one with the learning law

application and second. the modification in the learning law rates ki .
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3. Numerical Examples

amples are analyzed using the suggested method: a
ical model dealing with the

d by a linear system. 2 chem
biological

Three different numerical ex
he data corresponding to a real

benchmark problem represente
ozonation process to treat water and finally t

process called biofilter method.

200
F - — -DNN 22t
o Linear Systemx,,
i § "“\ ,
- /’ >, \-&
= X A \\/I’
00 | v
______,_______l—————‘f v d 2 —
209 500 1000 1500 2000 2500 2000 35C0
g T
mes
Q)
4 f ——<DNNx,,
cF » Linedr Systemxy,
4F
= 2
o2
of,
A
2F
% I e t 1 1 2 PR T
"o 500 1000 1500 2000 2500 3000 3500
Times

ftd]

n procedure for the linear system. a) State one non-parametric

Figure 1. State estimatio
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observation procedure an

a) Benchmark problem: Linear System

Let consider the linear system given by:

W A0 0
A=]0 0 I 6= B =0
-4 -5 -2 I (28)

¢ =[1 0 0] u(r)=3sin(t)+WN(0.1)

Here WN (0.]) is the standard pseudo-white noise signal generated by Matlab-
simu]in!(.. This example is presented like a benchmark problem in order to prove the
workability of this "adaptive" identification approach for simple systems. The

estimation process was carried out considering the adaptive learning law ensuring the
bounded property for the weights involved in the DNN structure. The DNNO
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application on the linear system () demonstrated the complete convergence between the

state given by the linear system (X1 is assumed to be completely accessed by any
physical mean) and the state given by the suggested approach (Fig. 1).
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Figure 2. State estimation procedure for the ozonation system. a) Reconstructed state
O, (dissolved oxygen) given by DNN observer and b) decomposition dynamics for the

contaminant CY derived by non-parametric estimation procedure.

b) Ozonation reaction: mathematical model approach

Ozone is capable to oxidize a variety of organic materials in aqueous solution. The
oxidation process by ozone involves the phenomenon of mass transfer with
simultaneous chemical reaction. Based on the results obtained in [11], where the simple

ozonation with i-component model mixture at the pH 7 has been treated. This process
can be described using the following system of ODE:

Cli’a.v % _]_ [Wgar (C;g,:’z 5 Cgl,'a.\- )' K.ml (Qmax i Ql )+ lelIQI ]

: Vo = (29)
0'=Ku(Om-0)kCl0, ¢i--KC g
lig
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where C'  is the ozone concentration in the output of the reactor (this is ozone
K

as

which doesn't react with organic compounds dissolved in the solvent), O, is ozone

dissolved in a liquid phase. C ,' is the organic compound concentration at time 7. The
parameters involved in the model description, have the following physical meaning:

V.. is the volume of gas phase which is assumed to be constant, W,  isthe oxygen
R

gas flow in the inlet of the reactor. K.,

maximum of ozone being in the saturated state liquid phase under the given

is the ozonation rate constant for the contaminate, V., , isthe

is the ozone saturation constant, Q, . is

the
conditions below. &,
Jlume. Notice that this component can not be available on-line. The only
¢ of this process is C;,m . This fact allows the observer application
on ozonation system to derive a simplified model for this complex real chemical
system. In view of the complete mathematical model reconstruction, the ozonation
dynamics was successfully reproduced (Fig. 2).
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Figure 3. Observation procedure for bio-filtering method. a) Reconstructed state
X, ,) (carbone dioxide) given by DNNO and b) pressure drop xl,) derived by non

parameltric estimation procedure
¢) Real Data Adjustment: Biological Filter problem

The popularity of the biofiltration has been increasing due to the high amount of
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pollutants produced by the industrial and human activity and the advantages offered by
this_technology. A lot of studies were conducted to enhance the performance of
biofiltration systems. Consequently, there is a necessity to develop methodologies
enabling to predict and determine the reactor performance. not only to design more
efficient reactors but also for predicting and control the behaviour of the systems under
different conditions of pollutants feeding. air flows, humidity and biomass production.

The model inputs were the carbon dioxide production (xl, and the pressure drop

(.\'3',) (on line measurements), the output variable was the elimination capacities (CE),

which describe the amount of pollutant eliminated by microbial activity. The DNN
observer was used here to reconstruct both on line measurements. so this approach can
be used like input identifier and to reconstruct the relationship between the plant states
and the input variables (Fig. 3).

4. Conclusions

The novel approach suggested in this work solves one of the most important problems
related with the, so-called. differential neural networks: the bounded property of the
dynamic evolution for the weights parameters. The asymptotic convergence has been
demonstrated applying a Lyapunov analysis. generating the corresponding conditions
for the possible learning rate function. Using these conditions, two different suggestion
were made in order to show why is this method feasible. Three numerical examples
show the simulation efficiency for this new kind to treat the learning procedure in
DNN.
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